第372章(1 / 3)
以他的学习速度,估计这个书架,会很快再次被摆满吧!
学习吧,骚年!
泡了一杯咖啡,程诺坐在书桌前,打开《复变函数》这本书的扉页。
论难度,复变函数自然是比大一学的高代、数分什么的要高上一个档次。这么课程,是以导数和积分作为出发点,渐渐发展出来的。
作为函数论分支的一种,比较实变函数来说,复变函数是以复数域作为一个自变量,进行各种函数运算。
而这本教材书主要是通过三个方面讲解有关复变函数的内容。
解析函数、共性映照、Riemann曲面。
程诺手边就放着草稿纸,一边看书,也一边计算着书中的定理。
例如Cauchy-Goursat(柯西-古沙)定理,就是指一个函数f(z)在区域U上有定理,g(z)称为f(z)在区域U上的解析原函数,若g(z)在U上解析且g'(z)=f(z)在U上处处成立。
看完这个定理后,程诺并没有直接看下面关于定理的证明过程,而是直接在草稿纸上自己证明。
【设γ:[a,b]→C为逐段光滑曲线,参数方程γ(t),a≤t≤b,若f(x)在γ上连续,则∫f(z)dz=∫(a,b)f(γ(t)γ'(t)dt……】
证毕,程诺翻开教材书比对。思路完全相同。
哇咔咔!果然,大数学家柯西和我的思路一样呢!
抱着美滋滋的心情,程诺继续往下看。
……
↑返回顶部↑
学习吧,骚年!
泡了一杯咖啡,程诺坐在书桌前,打开《复变函数》这本书的扉页。
论难度,复变函数自然是比大一学的高代、数分什么的要高上一个档次。这么课程,是以导数和积分作为出发点,渐渐发展出来的。
作为函数论分支的一种,比较实变函数来说,复变函数是以复数域作为一个自变量,进行各种函数运算。
而这本教材书主要是通过三个方面讲解有关复变函数的内容。
解析函数、共性映照、Riemann曲面。
程诺手边就放着草稿纸,一边看书,也一边计算着书中的定理。
例如Cauchy-Goursat(柯西-古沙)定理,就是指一个函数f(z)在区域U上有定理,g(z)称为f(z)在区域U上的解析原函数,若g(z)在U上解析且g'(z)=f(z)在U上处处成立。
看完这个定理后,程诺并没有直接看下面关于定理的证明过程,而是直接在草稿纸上自己证明。
【设γ:[a,b]→C为逐段光滑曲线,参数方程γ(t),a≤t≤b,若f(x)在γ上连续,则∫f(z)dz=∫(a,b)f(γ(t)γ'(t)dt……】
证毕,程诺翻开教材书比对。思路完全相同。
哇咔咔!果然,大数学家柯西和我的思路一样呢!
抱着美滋滋的心情,程诺继续往下看。
……
↑返回顶部↑