走进不科学 第20节(4 / 7)

投票推荐 加入书签 留言反馈

  则e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^k/k!]>0

  那么当n=k+1时,令函数f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)

  接着徐云在f(k+1)上画了个圈,问道:

  “牛顿先生,您对导数有了解么?”

  小牛继续点了点头,言简意赅的蹦出两个字:

  “了解。”

  学过数学的朋友应该都知道。

  导数和积分是微积分最重要的组成部分,而导数又是微分积分的基础。

  眼下已经时值1665年末,小牛对于导数的认知其实已经到了一个比较深奥的地步了。

  在求导方面,小牛的介入点是瞬时速度。

  速度=路程/时间,这是小学生都知道的公式,但瞬时速度怎么办?

  比如说知道路程s=t^2,那么t=2的时候,瞬时速度v是多少呢?

  数学家的思维,就是将没学过的问题转化成学过的问题。

  于是牛顿想了一个很聪明的办法:

  取一个”很短”的时间段△t,先算算t=2到t=2+△t这个时间段内,平均速度是多少。
↑返回顶部↑

章节目录