走进不科学 第20节(6 / 7)
偶尔还会出现一些倒霉蛋算着算着,忽然发现自己这辈子的研究其实错了的情况。
总而言之。
在如今这个时间点,小牛对于求导还是比较熟悉的,只不过还没有归纳出系统的理论而已。
徐云见状又写到:
对f(k+1)求导,可得f(k+1)'=e^x-1+x/1!+x^2/2!+x^3/3!+……+x^k/k!
由假设知f(k+1)'>0
那么当x=0时。
f(k+1)=e^0-1-0/1!-0/2!-.-0/k+1!=1-1=0
所以当x>0时。
因为导数大于0,所以f(x)>f(0)=0
所以当n=k+1时f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)成立!
最后徐云写到:
综上所属,对任意的n有:
e^x>1+x/1!+x^2/2!+x^3/3!+……+x^n/n!(x>0)
论述完毕,徐云放下钢笔,看向小牛。
↑返回顶部↑
总而言之。
在如今这个时间点,小牛对于求导还是比较熟悉的,只不过还没有归纳出系统的理论而已。
徐云见状又写到:
对f(k+1)求导,可得f(k+1)'=e^x-1+x/1!+x^2/2!+x^3/3!+……+x^k/k!
由假设知f(k+1)'>0
那么当x=0时。
f(k+1)=e^0-1-0/1!-0/2!-.-0/k+1!=1-1=0
所以当x>0时。
因为导数大于0,所以f(x)>f(0)=0
所以当n=k+1时f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)成立!
最后徐云写到:
综上所属,对任意的n有:
e^x>1+x/1!+x^2/2!+x^3/3!+……+x^n/n!(x>0)
论述完毕,徐云放下钢笔,看向小牛。
↑返回顶部↑