走进不科学 第273节(4 / 7)

投票推荐 加入书签 留言反馈

  时隔多日。

  方程上的内容依旧没变:

  4d/b2=4(√(d1d2))2/[2d0]2=√(d1d2)/[d0]=(1-η2)≤1……

  {qjik}k(z/t)=∑(jik=s)n(jik=q)(xi)(wj)(rk);(j=0,1,2,3……;i=0,1,2,3……;k=0,1,2,3……)

  {qjik}k(z/t)=[xak(z±s±n±p),xbk(z±s±n±p),……,xpk(z±s±n±p),……}∈{dh}k(z±s±n±p)……

  (1-ηf2)(z±3)=[{k(z±3)√d}/{r}]k(z±m±n±3)=∑(ji=3)(ηa+ηb+ηc)k(z±n±3);

  (1-η2)(z±(n=5)±3):(k(z±3)√120)k/[(1/3)k(8+5+3)]k(z±1)≤1(z±(n=5)±3);

  w(x)=(1-η[xy]2)k(z±s±n±p)/t{0,2}k(z±s±n±p)/t{w(x0)}k(z±s±n±p)/t……

  le(sx)(z/t)=[∑(1/c(±s±p)-1{nxi-1}]-1=n(1-x(p)p-s)-1。

  这是一个由正则化组合系数和解析延拓组成的复合方程组,解起来非常的麻烦。

  当时徐云做出的唯一判断,便是最后一道方程的解一定是个比值。

  不过今天有了足够的时间,他便又发现了一个情况。

  只见他在方程的第三行和第五行边画了两根线,又打了个问号。

  表情若有所思:

  “似乎……”
↑返回顶部↑

章节目录