走进不科学 第500节(3 / 7)
其中的m、v分别为微粒的质量和速度,乘以微粒数就是总动能。
接着只要求出最后磁极偏转的微粒运动轨道的曲率半径r,以及磁场强度h。
那么便可得:
hev=mv^2/r。
将上面三个公式互相代入,最终可以得到一个结果:
e/m=(2w)/(h^2r^2q)(感谢起点,现在后台总算优化一些了……)
而e/m,便是……
荷质比!
所谓荷质比,指的便是带电体的电荷量和质量的比值,有些时候也叫作比荷。
这是基本粒子的重要数据之一,也是人类推开微观世界的关键一步。
当初在听徐云讲波动方程的时候,为了弥补法拉第的数学水平,曾经给他打了个高斯灵魂附体的补丁。
不过今天高斯已经到了现场,徐云就不需要再考虑请神了。
只见高斯取过纸笔,飞快的在纸上演算了起来。
五分钟后。
这位小老头随意将笔一丢,轻轻的抖了抖手上的算纸。
↑返回顶部↑
接着只要求出最后磁极偏转的微粒运动轨道的曲率半径r,以及磁场强度h。
那么便可得:
hev=mv^2/r。
将上面三个公式互相代入,最终可以得到一个结果:
e/m=(2w)/(h^2r^2q)(感谢起点,现在后台总算优化一些了……)
而e/m,便是……
荷质比!
所谓荷质比,指的便是带电体的电荷量和质量的比值,有些时候也叫作比荷。
这是基本粒子的重要数据之一,也是人类推开微观世界的关键一步。
当初在听徐云讲波动方程的时候,为了弥补法拉第的数学水平,曾经给他打了个高斯灵魂附体的补丁。
不过今天高斯已经到了现场,徐云就不需要再考虑请神了。
只见高斯取过纸笔,飞快的在纸上演算了起来。
五分钟后。
这位小老头随意将笔一丢,轻轻的抖了抖手上的算纸。
↑返回顶部↑