走进不科学 第596节(2 / 7)
“在柯西先生他们的协助下,我们很快将这些数据进行了真近角点换算,确定出了两千多份的数值。”
徐云接过文件,认真看了起来。
从当年高斯花费一个小时,用最小二乘法计算出了谷神星之后,科学界对于行星轨道便来到了一个全新的认知阶段:
轨道根数本身也是时间的函数,6个独立轨道根数可以分成两个组别。
由此还推导出了轨道坐标系中行星的位置,也就是:
↑s={o}a(cose-e),{o}a(1-e^2)^(1/2)sine。
其中e就是偏近点角,和真近点角Θ的关系是:
tanΘ/2=√(1+e)/(1-e)tane/2。
这也是后世那些寻找x行星或者其他小行星团队使用的数学支撑之一。
黎曼、柯西他们换算出的数值虽然没有后世那么直观,但依旧展现出了很强的数学契合性。
反正对于这些大佬来说,多一个开方少一个开方,计算起来的难度其实都一样。
咦,这句话对后世的很多数学白痴似乎也适用……
咳咳……
接着黎曼又指了指不远处的分析机,此时高斯和柯西等人正趴在屏幕前,做着最后的核验:
“再后来便是伯爵夫人出马,将这些数据输入到了分析机里,最终筛选出了三十多组疑似坐标。”
↑返回顶部↑
徐云接过文件,认真看了起来。
从当年高斯花费一个小时,用最小二乘法计算出了谷神星之后,科学界对于行星轨道便来到了一个全新的认知阶段:
轨道根数本身也是时间的函数,6个独立轨道根数可以分成两个组别。
由此还推导出了轨道坐标系中行星的位置,也就是:
↑s={o}a(cose-e),{o}a(1-e^2)^(1/2)sine。
其中e就是偏近点角,和真近点角Θ的关系是:
tanΘ/2=√(1+e)/(1-e)tane/2。
这也是后世那些寻找x行星或者其他小行星团队使用的数学支撑之一。
黎曼、柯西他们换算出的数值虽然没有后世那么直观,但依旧展现出了很强的数学契合性。
反正对于这些大佬来说,多一个开方少一个开方,计算起来的难度其实都一样。
咦,这句话对后世的很多数学白痴似乎也适用……
咳咳……
接着黎曼又指了指不远处的分析机,此时高斯和柯西等人正趴在屏幕前,做着最后的核验:
“再后来便是伯爵夫人出马,将这些数据输入到了分析机里,最终筛选出了三十多组疑似坐标。”
↑返回顶部↑