走进不科学 第1113节(4 / 7)
这种构型乘波体的特征很明显,激波为二维平面激波,流场均匀度高,便于参数化表达以及后续优化设计。
同时几何构型简单便于设计,气动参数便于求解等等,这都是它的特征或者说优势。
至于缺点则是需要三维基准流场,难度较高。
又比如说锥导乘波体。
锥导乘波体就是基准流场为圆锥激波流场,可以理解成一个拥有直母线的普通圆锥。
它的缺点同样是激波构型为三维,并且压缩气流均匀度较差。
但由此带来的优势,则是乘波体的容积率会得到增加。
除此以外。
乘波体还有钝锥乘波体、非对称类锥形流场生成的椭圆锥乘波体、以及……
吻切锥乘波体。
吻切锥乘波体,乍一听似乎和尖吻蝮之类的蛇有点类似,但它其实是一种密切锥理论设计的乘波体。
这种乘波体要按照切片的方式,一个角度一个角度的设计,非常详尽复杂。
这种构型的优劣势应该是上述二维(楔)、三维(锥)乘波体的综合。
也就是可以改善中间区域流场的均匀度,同时容积率也有所提高。
缺点呢,当然就是比较难设计了。
↑返回顶部↑
同时几何构型简单便于设计,气动参数便于求解等等,这都是它的特征或者说优势。
至于缺点则是需要三维基准流场,难度较高。
又比如说锥导乘波体。
锥导乘波体就是基准流场为圆锥激波流场,可以理解成一个拥有直母线的普通圆锥。
它的缺点同样是激波构型为三维,并且压缩气流均匀度较差。
但由此带来的优势,则是乘波体的容积率会得到增加。
除此以外。
乘波体还有钝锥乘波体、非对称类锥形流场生成的椭圆锥乘波体、以及……
吻切锥乘波体。
吻切锥乘波体,乍一听似乎和尖吻蝮之类的蛇有点类似,但它其实是一种密切锥理论设计的乘波体。
这种乘波体要按照切片的方式,一个角度一个角度的设计,非常详尽复杂。
这种构型的优劣势应该是上述二维(楔)、三维(锥)乘波体的综合。
也就是可以改善中间区域流场的均匀度,同时容积率也有所提高。
缺点呢,当然就是比较难设计了。
↑返回顶部↑