走进不科学 第1176节(4 / 7)
众所周知。
中子输运方程之所以可以被视为线性方程,本质是因为系统中的中子密度通常比原子核密度小得多——这里是小指的是量级上的差距,也就是所谓的【远小于】的程度。
比如地球和西瓜,又比如人和蚂蚁。
这正是推导中子输运方程时,所作的基本物理假设之一,是一切后续推论的根基。
在这一假设下。
可以只考虑中子与介质原子核的碰撞,而忽略中子之间的碰撞,最终得到线性的中子输运方程。
但如果中子密度很高,以至于接近原子核密度或二者相当的时候……
这个假设自然就失效了。
而一般情况下。
原子核密度的量级通常是……
10.14^14g/cm^3!
这个数字和纸带上的中子密度虽然并不完全一致,但二者已经不存在量级上的区别了:
好比a和b两个人,a有100万资产,b有80万资产。
你可以说a比b有钱,但二者的差距并不大,说不定没几个月b就赶上a了。
换而言之……
↑返回顶部↑
中子输运方程之所以可以被视为线性方程,本质是因为系统中的中子密度通常比原子核密度小得多——这里是小指的是量级上的差距,也就是所谓的【远小于】的程度。
比如地球和西瓜,又比如人和蚂蚁。
这正是推导中子输运方程时,所作的基本物理假设之一,是一切后续推论的根基。
在这一假设下。
可以只考虑中子与介质原子核的碰撞,而忽略中子之间的碰撞,最终得到线性的中子输运方程。
但如果中子密度很高,以至于接近原子核密度或二者相当的时候……
这个假设自然就失效了。
而一般情况下。
原子核密度的量级通常是……
10.14^14g/cm^3!
这个数字和纸带上的中子密度虽然并不完全一致,但二者已经不存在量级上的区别了:
好比a和b两个人,a有100万资产,b有80万资产。
你可以说a比b有钱,但二者的差距并不大,说不定没几个月b就赶上a了。
换而言之……
↑返回顶部↑