走进不科学 第406节(3 / 7)
同时上面已经用a^2f/at^2来表示函数对t的二阶偏导数,那么这里自然就可以用a^2f/ax^2来表示函数对x的二阶偏导数。
然后两边再同时除以t,得到方程就简洁多了:
a^2f/ax=μa^2f/tax^2。
同时如果你脑子还没晕的话便会发现……
μ/t的单位……
刚好就是速度平方的倒数!
也就是说如果我们把一个量定义成t/μ的平方根,那么这个量的单位刚好就是速度的单位。
可以想象,这个速度自然就是这个波的传播速度v:
v^2=t/μ。
因此将这个值代入之后,一个最终的公式便出现了:
a^2f/ax=a^2f/v^2ax^2。
这个公式在后世又叫做……
经典波动方程。
当然了。
这个方程没有没有考虑量子效应。
↑返回顶部↑
然后两边再同时除以t,得到方程就简洁多了:
a^2f/ax=μa^2f/tax^2。
同时如果你脑子还没晕的话便会发现……
μ/t的单位……
刚好就是速度平方的倒数!
也就是说如果我们把一个量定义成t/μ的平方根,那么这个量的单位刚好就是速度的单位。
可以想象,这个速度自然就是这个波的传播速度v:
v^2=t/μ。
因此将这个值代入之后,一个最终的公式便出现了:
a^2f/ax=a^2f/v^2ax^2。
这个公式在后世又叫做……
经典波动方程。
当然了。
这个方程没有没有考虑量子效应。
↑返回顶部↑