走进不科学 第1409节(2 / 7)
也就是……爱因斯坦引力场方程。
这是一组高度复杂的非线性偏微分方程组,要求解的未知函数既包括度规分量gμν,也包括能量动量张量的分量tμν。
众所周知。
平直闽氏时空度规是:ηαβ=(-1,1,1,1)以及号差±2。
所以引力场的空间几何对角线元是:ds2=-(1+2Φ)dt2+(1-2Φ)(dx2+dy2+dz2)
而引力场静态引力势为:h00=-2Φ,牛顿引力场势为:▽2Φ=-4πgp
在近拟弱场下可以静态归一化,两式相比较,就得到:h00=-4Φ
代用牛顿引力势,轻松得到:▽2h00=-16πp;(g=1)
在等号左侧加上一个表示空间波动的四维算符达朗贝尔□:□h00=-16πp
设想场的变化只因场源的波动,可有关系:
□=▽2+0(v2▽2)
又因为应力能量张量是t00=p,□h00=-16πt这就是“线性爱因斯坦场方程”。
从这个表达式不难看出,这个方程中对hαβ是线性处理的,就好像一个立体的东西压扁了给你看一样。
那么自然,质点系的引力场方程为:h00Φ=-8πt
引入爱因斯坦张量表示在弯曲时空中的静态场量即是:
↑返回顶部↑
这是一组高度复杂的非线性偏微分方程组,要求解的未知函数既包括度规分量gμν,也包括能量动量张量的分量tμν。
众所周知。
平直闽氏时空度规是:ηαβ=(-1,1,1,1)以及号差±2。
所以引力场的空间几何对角线元是:ds2=-(1+2Φ)dt2+(1-2Φ)(dx2+dy2+dz2)
而引力场静态引力势为:h00=-2Φ,牛顿引力场势为:▽2Φ=-4πgp
在近拟弱场下可以静态归一化,两式相比较,就得到:h00=-4Φ
代用牛顿引力势,轻松得到:▽2h00=-16πp;(g=1)
在等号左侧加上一个表示空间波动的四维算符达朗贝尔□:□h00=-16πp
设想场的变化只因场源的波动,可有关系:
□=▽2+0(v2▽2)
又因为应力能量张量是t00=p,□h00=-16πt这就是“线性爱因斯坦场方程”。
从这个表达式不难看出,这个方程中对hαβ是线性处理的,就好像一个立体的东西压扁了给你看一样。
那么自然,质点系的引力场方程为:h00Φ=-8πt
引入爱因斯坦张量表示在弯曲时空中的静态场量即是:
↑返回顶部↑